Types of Quadrilaterals and their Characteristics
Describe a polygon...
What is a diagonal?
Describe the difference between **convex** and **concave** polygons.
What is a quadrilateral?
Parallelogram: a quad. whose opposite sides are parallel.

Facts:
- opposite sides are \cong
- opposite angles are \cong
- consecutive angles $= 180^\circ$
- diagonals bisect each other
Rectangle: a parallelogram whose interior angles are congruent.

- an equiangular parallelogram
- same facts as parallelogram PLUS
- all angles are congruent (90°)
- diagonals are congruent
Rhombus: a parallelogram whose sides are congruent. • an equilateral parallelogram
• same facts as parallelogram PLUS
• all sides are congruent
• diagonals are perpendicular
• diagonals bisect angles
Square: a parallelogram whose sides AND angles are congruent.

- a regular parallelogram
- an equilateral rectangle
- an equiangular rhombus
- same facts as parallelogram, rectangle, and rhombus
Kite: a quadrilateral that has 2 pairs of \cong consecutive sides, but opposite sides are NOT \cong.

- 2 pairs of consecutive sides \cong
- one pair of opposite angles are \cong
- diagonals are perpendicular
Trapezoid: a quadrilateral with exactly one pair of opposite sides parallel.

- parallel sides are called the bases
- non-parallel sides are called legs
- angles along the bases are called base angles
Isosceles Trapezoid: a trapezoid with congruent legs

- characteristics of trapezoid
- legs are \cong
- base angles are \cong
- diagonals are \cong
Midsegment Theorem:
the midsegment of a trapezoid is parallel to each base and its length is half the sum of the lengths of its bases.

$$AD \parallel MN \parallel BC$$

midsegment = \(\frac{b_1 + b_2}{2} \)
Examples:
Find the missing angles.

\[
\begin{align*}
37^\circ + 143^\circ + z + 37^\circ &= 360^\circ \\
143^\circ + 37^\circ &= 180^\circ \\
143^\circ + z &= 180^\circ \\
z &= 37^\circ
\end{align*}
\]
Ex 1:

Name the
a) bases $\overline{CS \, \overline{AT}}$
b) legs $\overline{CA \, \overline{ST}}$
c) base \angles $\angle C < \angle S < \angle A < \angle T$
d) diagonals $\overline{CT \, \overline{AS}}$
c) opposite \angles $\angle C + \angle T$
$\angle A + \angle S$
Ex 2:

Find

a) $m \angle LI = 120$

b) $m \angle LC = 90$

c) $TL = 17$

\[
\frac{23 + 11}{2} = \frac{34}{2} = 17
\]
Ex 3:

Find

a) \(x \) \(\frac{13}{3} \)

b) all \(\text{Ls} \)

\[
\frac{117}{x} = \frac{5}{3}\varphi \quad \text{base angles} = \frac{63}{126}
\]
Ex 4: The following is a rectangle. Find the variables.

\[6y - 18 = 90 \]
\[6y = 108 \]
\[y = 18 \]

\[3x + 5 = 26 \]
\[3x = 21 \]
\[x = 7 \]
Ex 5: The following is a rhombus. Find the variables.

\[y = 28.5^\circ \]

\[\frac{7x - 11}{4x + 25} \]

\[\frac{3x - 11}{25} = \frac{11}{3} \quad x = 12 \]

\[\frac{123 + 123}{246} = \frac{360 - 246}{114} = \frac{57}{114} = \frac{28.5}{57.0} \]
Ex 6: Find all the angles if the $m\angle TOP = 110^\circ$ and $m\angle OPM = 85^\circ$
Quadrilateral SRPQ is a rhombus. Quadrilateral LSPM is a rectangle.

Find all the angles.
HW

pg 319 #5 - 19

pg 325 #3 - 10